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Abstract

We present o new algorithm for material boundary interface recon-
siruction from dats seis contrining volume fractions. We mansform
the reconstruction problem to a problem that amalyzes the dial dota
sel, where éach veniex in the dual mesh has &n associaled baryeen-
tric. coordinate tuple that represents the fraction of esch material
present. After consiructing the dual tetrahedral mesh from the arig-
inal mesh, we construct material boundanes by mapping a 1etrhe-
dron into barycentric space and calculating the intersections with
Voronai cells in baryceniric space. These intersections are mapped
back 10 the original physical space and triangulated 1w form the
boundary surface approximation. This algorithm can be applied
to any grid structure and can treat any nomber of materials per cle-
miEnlveries,

Keywords: Eulerian flow, material boundary surface, baryoentric
coordingtes, volume fraction, Voronol diagram,

1 INTRODUCTION

There sre numenous instances in which it is IO FECOn-
siruct or track the boundary surfaces (or “interfaces") between miil-
fiple muterials that commonly resull from numenical stmulations,
Multi-fluid Eulerian hydrodynnmics calculations requine geometric
appresimations of fuld interfaces to form the equations of maion
10 advance these interfoces cormectly over time. In typical simula-
tions, the grid cells contain frectional volumetnic information for
each of the maerials. Each cell © of a grid 5 has an associated (-
Pl {oey, g oo O | that represents the portions of each of m ma-
terials in the cell, Le. oy represents the frectionnl part of maternial
£ We pasume that o + o + -+ + o = 1, Considerations
in approecing this problem involve finding & {crack-free) plecewise
iwo-manifold separating surface approximating the boundary sur-
fuciss between the various materials, as well as spatial and wemporal
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Figure 13 Gnd and dual grid: The original grid (dashed lines) is
reploced by a dunl grid (solid lines), obtained by connecting the
centers of the origing] elemems, Baryeeniric coordinates are asso-
ciated with each veriex of the dual grid. The barycentric coordinates
represent the fractions of each material present in the onginal grd
cells.

smoothness,

To solwe this problem, we consider the disal data set construcied
from the given data set, os shown in Figure 1. In the dual grid,
cach cell is represenied by o point (typically the center of the
cellh, and each point is associsted with wple (oo, o Om
where m is the numbser of malerials present tn the data set and
oy + g + -0+ ey = L. Thus, the boundary surface recon-
strisction problem reduces 1o constructing the mmerial imerfaces for
a grid where each vertex has an associated horyeentric coordinate
representing the froctional parts of each matenial at the veriex. We
use this “barycentric coordinate field™ w approximate the material
boundary surfaces.

Important applications of this problem ocour for all grid types,
£ 2., when the duota points lie on a rectilinear grisd, curvilinear grid,
or an unstructured grid, We therefore develop o solution strategy
that is tailored to tetrahedral grids. os all other types of grid struc-
tures can be converted 1o this form. as demonstraled by Nielson
[1]. In the case of rectilinear, curvilinear, or even hybrid polyhedral
meshes, we s & given prid by subdividing each polyhe-
dral cell into wetrahedra, and apply our algorithm o the resulting
teirahodral

If we have o datn &1 contwining wm malenals, we process gach
icirahedral cell of the grid and map our tetrahedral elements into an
m simplex representing m-dimensional barycentric space.  Mesi,
we enlculate intersections with the edges of Voronod cells [2] in
the m-simplex. These Voronoi cells represent regrons, wherg one
material “dominates” the other materials locally. We map these
intersections back 1o the original space and triangulate the resolting
points to ohdain the boundary.

Section 2 describes previous work dealing with material bounsd-



ary surizgces. Section 3 describes the two-materin] case, which can
be viewed a5 & simple extension of 3 marching cubeshetrahedra al-
gorithm [3, 4, 5]. Section 4 describes the three-material case, Here,
material boundaries are caleulated in baryeentnic space (a triangle)
and mapped back o the original data sel. The general m-material
case 15 described in Section 5. In this case, inersections are calco-
lated in o baryeentric m-simplex and mopped back to the ictrahedra
in the data set. Implementation details are described in Section 6,
Section 7 presents resulis for various daia seis, and Section 8 pro-
vides conclusions and describes possible future work,

2 RELATED WORK

The bulk of research in material inderface reconstruction has been
conducted in compuiational fuid dynamics (CFD) and hydrody-
namics, where researchers are concerned with the movement of ma-
terial boundares during a simulation,

The Simple Line Interface Calculation (SLICH algorithm by Noh
and Woodward [6] is ome of the earliest, describing a method for ge-
ometric approsimation of Auid interfaces. Their algorithm is used
in conjunction with hydrodynamics simulations o irack the advee-
tion of fluids. Working only with two-dimensional grids, their algo-
rithm produces an interface consisting of line segments, construcied
parallel or perpendicular 1w a coordinate axis, Muli-Nuid cells can
be handled by grouping fluids iogether, caleulating the interface be-
rwien the grougs, subdividing the groups, and ilerating this process
uniil wmterfnces are construcied, Since this algorithm only wses ling
segments that are parallel to the coordinate axes, the resulting inter-
faces are generally discontimenus,

The algorithm of Youngs [7] also operstes on iwo-dimensional
grids amd uses line segments 0 approximate interfaces. In this al-
gorithm, the line segments are nol necessarily perpendiculor or par-
allel w a coordinate axis. Instead, the neighbor cells of a cell
wre used (o determine the slope of a line segment approximating an
imterface in €. The exsct location of the lne segment is adjusted
i preserve the volume fractions in a cell, Multiple materials are
trented by grouping materials and determining interfaces on a two-
material basis, Again, the interfaces produced by this method are
generally discontinuous,

The alponthm of Gueffier [B] reguires an estimate of the noe-
minl wector (o the inberfoce in order o reconstruct the imerface. He
utilizes finite differencing or least-squares methods 10 approximale
this normal and adjusts a ling segment perpendicular to this nor-
mal o gencrate a boundary surface in o cell, The surface is gener-
ally discontinuous, and it is uncléar how multiple matenals can be
hamdled, or how one could genernlize the algorithm to the case of
three-dimensional grids.

Fillind and Puckeu [9] compare various volume-of-flufd in-
terface reconstruction algorithms, including SLIC, poting differ-
ences in the surfaces reconstnicied and demonsirating firsi-order or
second-order pecuracy, Their goal is 1o reproduce o linear interface.

Mielson und Franke [ 10] have presented o method for caleulating
a separming surface in an wnstructured grid whee cach vernex of the
erid is associated with one of several possible classes, Their method
peneralizes the marching cubesfietrahedra algorithm, but instead of
using 4 srict binary classification of vertices. it allows any num-
ber of classes. Edges in tetrahedml grids whose endpoints have
different classifications are interseciod by the separating surface,
Sirmilarly, the faces of a weirahedron whose three vertices ore classi-
fied cdifferently, pre assumed 1o he intersecied by the surface in the
micdle of the face. When all four vertices of a tetrahedron have dif-
(erent clossifications, the boundary surface intersects in the interior
ol the tetrahedron. The resulting “mid-cdee™. *mid-face™ and *“mid-
tetrahedron™ intersections are rianguloed to form the surface.

Our glgorithm generalizes the ahove schemes, We utilize o grid
thit has o baryeentric coordinate associated with ench vertes. This

allows us o generide materninl boundories directly from the inter-
sections enlculated in “harycentric space” Owr algorithm handles
miultiple mnierials and con reconstruct layers amd “Y-type” {mon-
manifold}) interfaces with equal ease. Our algorithm does not rely
on application-specific knowledge of hvdrodynamics or other sim-
ulntion codes, bat solves the problem from a purely mathematical
viewponL,

2 THE TWO-MATERIAL CASE

Consider an unstruchured two-dimensional grid & of triangles,
where each veriex of & has an associnied baryceniric coordinate

= [y, gy o0y 0ig ). Lot T be a triangle of S, and assume that
there are two distinct indices 1 and 15, such that for each vermex
v of T, its sssocisted harycentric conrdinate has the property that
iy + gy = 1. and oy = 0 when 1 3 4, 6. Then we assume thal
exactly two malerials are contmined in the irangle T°.

In this case, we define the malenal boundary 1o be the set of
points where oy, = oy, = i.' Using linear imterpolation. we
can find the point on each edge where oy, = ay; = §, and by
computing these points on all edges of T, we can use a contouring
algorithm o draw the boundary contour,

For unstrsctured three-dimensionn] grids of weirahedra, the two-
material case mﬁm to an isosurface calculation, determining the
isosuriace o which con easily be implemented by a marching
tetrahedra m:uuh

4 THE THREE-MATERIAL CASE

Let T be m inangle of 5. and assume that there are throe distine
indices iy, i, and 5. such that for each vertex v of T, its associated
barycentric coordinate has the property that oy, + oy + oy = 1
and oy = 0 when ¢ # 1,1y, 15 [In this case, we assume thal
pesentinlly three materials are contaimned in the tnangle T,

Without loss of generality, we will assume thatn = 3, 1) = 1,
t3 = X gnd i = 3. Thus. each venex of T hes on associnted
Juple o = oy, orp, o), where @y + oz + a3z = 1. Here, a,
is the (mection of material my, g is the fraction of g, and oy
is the fraction of s, respectively. The coordinate (e, g, i3
lies on the equilateral triangle with vertices (1,0, 05, (0, 1,0), wnd
(0, 0, 1), as shown in Figure 2, We pariition thas inangle o three
reghons, defined by the Vormai cells Vi, Voo and Vs, see Figure 3,
The Yoronoi cells V) are bounded by the edges of the trinngle. and
the three line sepments {z. {ga. u.nd!u,wltrnul = fry il Ay =
m=mandoy < i, oras =oganda; < ,I,n:ipn:mnly
For 1wu—dnn:mmnai triangular grids, we map the associited
baryeentric coordinates of a triangle T' onto a triangle T° in
baryoentric space. We use the intersections of the edges of T with
the edges of the Voronoi cells in the barycentric trungle to define
material interfaces in T°. These intersections are then mapped back
o poings in ¥, using the same lincar paromicters o determine the
iniersections on the edges of T, There are three cases;

=

nr

o The iriangle T" does not intersect [y, [1a, 0 [x. In this case,
we assume that no material boundary exists in T

w The triangle T intersects at least one of the line segments {33,
{13, or [23, ond the center & of the haryceninic iriangle does mol
lig imside T, In this case, we calculsie intersections on the
edges of T, corresponding 1o the intersections of T with [;5.
{19, and laa, respectively. (The triangle T may intersact al
maxed fwo of These lines.) The material boundary line segments

"The rationale behind this decision is that an infindesimally small cell
wihsose cemler 18 on e boundary will comtabn approximaiely hall of each
maderial,




Figure 2: Domain tmangle in baryceniric my mgamy-space. /%‘\
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Figure 4: Mapping intersections from baryceninic s o the tri-
angle T The images on the heft show the tangle T in barycentric
space, and the images on the right show the maierial boundary line
segments mapped from baryeentric space to the original triangle T
in physical space.

Figure 3; Pantitioning the baryceniric inangle into regions. The
point. ¢ is the point (3, ,—:. %]. the center of the iangle. 1. .
and [33 bound the Voronoi cells VY in the interior of the triangle.
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Figure 5: Examples of material boundary surface determination for
tetrahedral grids,

inside T are then defined as the line segmnents that connect
the corresponding edge inlersections in T, Figures 42 and 4¢
illustrate these cases,

# The point € lies inside T, |n this case, we calculate three edge
intersections for T, cormesponding 1o the intersections of T
with Iy, {a. and lga, respectively, and o point in the interior
of T'. oomesponding 1o the point ¢ in 7. The material bound-
ary line segments are defined as the three lines connecting the
edge intersections and the face point. Figure 4b illustrutes this

CREC.

If one of the vy values is 2ero for each of the three venices of o
irianghe, then all points map o an edge of the baryeentric trinngle.
Thus, the situation reduces to the two-moterial case. I only one
material is present at all three vertices, then no inlerseclions are
enleulated.

For three-dimensional tetrahedral grids, we wse the associated
barycentric values. of the vertices of ench face of a werahadron
T and map the werahedron 0 an image T” of T in barycentric
space. Intersections are calculnted separately for each face of 77
and mapped back to T'. There are three cases:

s No edge of the tetruhedron T intersects the line segments
3. {19, or fus. In this case, mo material boundaries exist in
the tetrahedron T

o The edges of the tetrahedron T intersect at least one of the
line segments {3, 11, or {39, bui the point (1, £, 1}, the cen-
ter of the harycentric iriangle, does not lic inskde any of the
faces of T°. In this case, we calculate the intersection line
segments for each triangular face of T and detérming a trian-
gulation from these segments by following the manching tetra-
hedra algonthm [5). Figures 5a and 5b illustrate the possible
CASLS.

44
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Figure b Woronoi cell decomposition in the four-material case: The
figure illusirates o three-dimensional projection of the baryceniric
tetrahedron from four-dimensional space. The tetrahedron is seg-
mented into four Yoronoi cells in (a) In (b, a wrahedoon, mapped
from physical space, is shown inside the barycentric tetrahedron.

# The center point of the barycentnic trisngle bes inside two
faces of T°. In this case, two faces have a single mate-
rigl boundary line segment connecting two edpe intersection
points, and two faces have three material boundary line seg-
ments meeting in the interior of two faces, We map the inter-
sections back o the tetrahedron T, wsing linear interpolstion.
Lising the material boundary line segments for each face, and
the line segment connecting the two points in the interior of
two faces of T, we can determine a valid triangulation of the
boundary surface. Figure Sc illustrates this case.

5 THE GENERAL CASE

In the case of four materials, we can assume that each vertex of a
iriangle T has an associated barycentric coordinaie given by o fiour-
wple o = (g, ova, oon, oy ), Where ag + a2 + o3 + g = 1, and
a; = [0, By considering the tetrabvedron having vertices (1, 0, (0, (),
(0, 1,0,0), (0,0,1,00 and (0,0.0, 1} in four-dimensional space,
we can construct i partition of this letrahedron simidlar to the three-
material case. Again, we use the Yoronoi cells for the decomposi-
tion of the barycentric tetratedron, The boundaries of these cells
include pans of the faces of the werahedron and six planar pieces,
which are defined by 0 = 09, 0 = ap, oy = o0y, O3 = o8,
g = oy, Ond oy = oy, This Vioronod partition is shown in Fig-
ure G

For mwo-dimensionn] grids, we map the four-dimensional
harvcentric coordinates assocuited with the vertices of a tnangle
T into a trinngle 77 in barycentric space. We use a clipping al-
gorithm to generate the intersections in the trizngle T, clipping
against the six planes defining the boundanes of the Vorono cells
of the baryeentric werahedron, The tetrahedron s stored in o binory
space partitioning (BSP) tree. and we apply the clipping algorithm
described by Samet [11] . Once the intersections arc determined by
the clipping algorithm. the material boundary line segments can be
determined for the triangle T,

For three-dimensional tetrahedral grids, we use o similar clipping
algorithm for the image T of & tetrahedron T This enables us o
culculate the boundary surfaces inside the tetrabedron T, which we
then map hack 1o the tetrahedron T in physical space,

In the general case of wm materials, we map a tetrabedron T o
& tetrahedron T in an mesimplex in barycentric space. The m-
simplex is partitioned into Yorenoi cells whose boondaries consist
of the faces of the m-simplex and the (7] hyperplanes defined by



= iy, Where i # jand 1 £ 4,7 < m. The material bound-
aries for T are calculaied by using o chipping algorithm and then
e mipped back o physical space (o form the material boundaries
inside T". We utilize a BSP algorithm 1o perform the clipping.

6 DISCUSSION

The algonithm runs in effectively the same time us does the march-
ing cubesfietrnhedra algorithm, We traverse the cells of a grid and
calculate, for each cell, a polygonal representation of the material
haosundaries. Most grid cells in common examples contain anly one
material, and boundaries do nodt exist in these cells,

Wi note thot the algorithm can miss materinl boundaries in 1etra-
hedra. In any isosurface-type algorithm, it is possible for the iso-
surface w enter @ tetrahedron, but only intersect one edge. In this
wase, the algonihm cannot detect the material boundary from only
ihe information ai the vertices,

In the three-material case, we have chosen the point ¢ =
[§+ 5+ 5 ) s the “center™ of the burycentric triangle. This assumes
that there are three distinet sectors in the baryoentric triangle, sub-
dividing the triangle in a Y™ fashion, and that a cell of infinites-
imally small size contuins nbouwt one-third of each material in the
cell. This is not always the case, For example. consider a “T inter-
section,” where any small cell would contain one-hall of one mate-
rial and one-quarier of the other two materials. We can adjust oar
segmentation of the barycentric triangle so that the point ¢ is ot an
arbitrary location in the iriangle, and the edges that determine the
intersections can be adjusted appropriately. This can be done by
sampling in a larger neighborhood of & specific cell to understansd
how to weigh the materials about the “Y poinl” This 15 a global
process: neighboring cells must agree with the change in order 1o
MR CoRtmuity.

In the Tour-maierinl case, the center of the tetrabedron can also
be adjusted. However, this implies that the “center™ vertices on the
faces must also be adjusted so that the separating surfaces remain
planar. In the m-maderial case, similar considerntions also hold
when adjusting the center of the m-simplex,

O algorithm can be considered as & direct generalization of the
Mielson-Franke algorithm [10]. Easch vertex of a grd & has an
pssocinted barycentric coordinate o = (g, g, vrey e )y 10 by re-
stricting material fractions such thal exacily one a; = 1, we obtain
the cose where each vertex is only associated with one materiil,
In this case, our algorithm produces the results produced by the
Mielosn-Franke algorithm.

7 RESULTS

We have implemented this slgorithm and wsed it 1o generate ma-
tesinl interfaces for o varely of data sets. Figure 7 illustrates the
misderial interfaces for a data set consisting of three mutenals. The
boundary of the region containing material | has o spherical shape,
andd the other two material regions are formed as concentric layers
pround material | - forming two material interfaces. The origi-
nal grid is rectilinear-hexahedral consisting of 64 = 64 = 64 cells,
We constructed the dual grid, and then splil each dual cell into six
tetrahedra, see Nielson [ 1], creating 1,572,864 tetrahedra. Approx-
imutely 30% of the tetrahedsn contmining the material boundanes
eontain two boumdary surfaces,

Figure B shows the matertal interfaces for o three-maierial data
sct of o simulntion of o ball striking a plate consisting of two mate-
risls. The originad data set is rectilinear-hexahedral and has a reso-
luthon of 53 = 23 = 23 cells. Again, we created the dual grid, and
split cach dual cell ino six wetrahedra, creating 28,037 tetrahedra.
The datn sed is tme-varying and four me-sieps ane shown,

Figure 7; Boundary surfaces of two materials formed as two con-
centric spherical "shells",

Figure B: Simulaton of a propectile stnking a thick plate. The pic-
twre in the upper-lefit cormer shows the initial configuration, and the
following sequence of pictures shows the boundary surfoces as the
projectile penetrates the two-material plate.
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Figure % Brain dots set. The muoterial boundary surfaces are shown
in red, green and yellow, The polvgons forming the material bound-
artes are clipped to show the intenior of the data set. Two views of
the matenal boundary surfaces are shown in (2] and (b).

Figure 9 illustrates the matertal interfaces for a human brain dat
sel, The orginal grnd is rectilinear-hexabedral contnining 258 =
2066 x 124 cells, Each cell contains o probability wple giving the
probability that each material & present at the point, The three types
of material are white-matier, grey-miniter. and “other”. The resulting
dul daty sef contains over eight million tetrahedra.

8 CONCLUSIONS

We have presented & new algorithm for material boundary surface
reconstruction from dats se1s costamng malenial volume-fraction
information. We transform o given prd 1o a dusl prid, where each
werten has an associated barycentric eoordinate that represents the
fractions of ench materinl present.  After tetrabedrizing the dual
grid, we construct the matenal interfaces by mapping each ietrabhe-
dron to barycentric space, calculating the intersections with Voronaoi
cells in barycentric space. These intersection points are mapped
hack 1o physical space and triangulated 1o form the resalting bousd-
ary surfnce.

The algorithm can treat any number of materials per cell, and
stnge it i based on tetrabedral grids, it can be used with any grid
striciure,

Concerning future work, we would like o insert 0 “measure-and-
nckjust™ Teature 10 the algorithm. Once an tmitial boundary surfuoe
appros imation s cilculated, we calculuie (new) solume fractions
for cells directly from this boundary surface. This will enable us
b caleulate the difference between the original volume fractions
and the volume froctions as implied by our initial boundary surface
ppprox imation, 11 is then possible o adjust our material interfaces
o minimize the volume fraction deviations.

We also plan 10 extend this algorifm 0 multidimensional grids.
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Figure 7: Boundary surfaces of two matenals formed as two concentric spherical “shells”

Figure B: Simulation of a projectile striking a thick plate. The picture in the upper-left corner shows the initinl configuration. and the following
sequence of pictures shows the boundary surfaces as the projectile penetrates the two-material plae,
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Figure 9: Brain daia set. The material boundary surfaces are shown in red. green and yellow. The polygons forming the material boundaries
are clipped to show the interior of the data set. Two views of the material boundary surfaces are shown in (a) and (b)



