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Fig. 1. Visualizations of the inverse metric tensor �eld of a �ow surface in surface parameter space (left and right) give s an overview of
surface stretching. The middle image demonstrates different surface visualizations made possible by metric tensor �e ld processing.

Abstract — Integral �ow surfaces constitute a widely used �ow visuali zation tool due to their capability to convey important �ow
information such as �uid transport, mixing, and domain segm entation. Current �ow surface rendering techniques limit t heir expres-
siveness, however, by focusing virtually exclusively on displacement visualization, visually neglecting the more complex notion of
deformation such as shearing and stretching that is central to the �eld of continuum mechanics. To incorporate this info rmation into
the �ow surface visualization and analysis process, we deri ve a metric tensor �eld that encodes local surface deformati ons as induced
by the velocity gradient of the underlying �ow �eld. We demon strate how properties of the resulting metric tensor �eld ar e capable
of enhancing present surface visualization and generation methods and develop novel surface querying, sampling, and visualization
techniques. The provided results show how this step towards unifying classic �ow visualization and more advanced conce pts from
continuum mechanics enables more detailed and improved �ow analysis.

Index Terms —vector �eld, integral surfaces, metric tensor, deformati on, velocity gradient, continuum mechanics.

1 INTRODUCTION

Flow surfaces orintegral surfacesare a well-established concept in
three-dimensional vector �eld visualization and can be employed to
visualize a number of signi�cant �ow properties. Their primary use is
the display of �uid transport and, in the case of topology analysis, the
illustration of separation and mixing behavior. Their expressiveness
has made them a central �ow analysis tool in a wide range of appli-
cation areas such as airplane or automotive engineering and industrial
mixing. In contrast to line or point-based techniques they are able to
model continuously connected �uid components or material interfaces
and are a suitable basis for advanced texturing, lighting, and animation
techniques.

While clearly conveying surface transformations that result in a
change of shape, such as surface bending, current �ow surfacevisual-
ization techniques do not quantify or analyze planar (tangential) com-
ponents of �ow surface deformation such as stretching or shearing.
The present paper aims at integrating this deformation into the surface
visualization and analysis process to allow for a more complete �ow
analysis including investigation and display of physical phenomena
like thinning of injected dye streams and �ow divergence or conver-
gence on surfaces. The importance of this data for �ow analysis is
emphasized by the growing interest in Lagrangian �ow analysis and
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time-varying �uid mixing in the context of Finite Time Lyapunov Ex-
ponent maps which measure and visualize exponential stretching of
�ow neighborhoods.

Our technique makes use of higher order concepts from continuum
mechanics and derives a metric tensor �eld describing local, tangential
deformations of surface parameter space. We present two strategies
for the derivation of these metric tensors. The �rst strategy is based
on deformation gradient tensor accumulation along particle trajecto-
ries and independent of the resolution and characteristics of the sur-
face discretization, requiring only minimal modi�cations to standard
particle trajectory computations. The second approach relies directly
on the presence of a surface mesh and computes deformation tensors
by explicit mesh sampling. In both cases the resulting deformation is
converted into a two-dimensional second-order tensor space to repre-
sent time-varying planar stretching and shearing. We develop novel
visualization and analysis techniques for this metric tensor �eld based
on glyph packing and tensor line integration to allow for enhanced
surface visualization and interaction. These visualizations enable tar-
geted analysis and querying/exploration of surface regions with spe-
ci�c deformation behavior, streamlining the �ow analysis process and
reducing visual data complexity.

In summary the main contributions of this work are

� Derivation of metric tensor �elds for �ow surfaces,
� Metric tensor �eld visualization in surface parameter space, and
� Enhanced �ow surface visualization and querying.

The paper is structured as follows. We brie�y summarize related
work in Section 2, before establishing a mathematical background in
the relevant areas of continuum mechanics in Section 3. The technical
contributions of the paper are described in detail in sections 4 and 5.



Results are presented in Section 6 before the paper is concluded with
Section 7.

2 RELATED WORK

Our work uni�es concepts from classic vector �eld visualization, ve-
locity gradient analysis, and tensor �eld visualization. In the following
we summarize the most closely related work from these �elds.

Flow surfaces came into focus of the visualization community in
the early nineties, and have gained signi�cantly in popularity since
Hultquist [17] de�ned adaptive stream surfaces in steady settings.
More recent research [22] has improved both the generation [11, 20]
and visualization [18, 3] of integral surfaces in steady and unsteady
vector �elds. With the exception of work by Funck et al. [28], who
map triangle area to surface transparency, none of these approaches
quantify or visualize surface stretching explicitly.

A different look at �ow visualization is given by work that studies
higher order effects of �ow �elds in the form of mixing [13] and vol-
ume deformations [23] induced by the velocity gradient tensor. Our
work in part makes use of the �ow deformation de�nitions given in
these papers. Closely related to this topic of �ow deformations is the
notion of Lagrangian �ow analysis in Finite Time Lyapunov Expo-
nent (FTLE) computation [14] and visualization [25, 10, 12], where
time-bound stretching of �ow is investigated. Additionally, the local
effects of the velocity gradient tensor on boundaries of the �ow domain
may be visualized as well [29, 6]. Although latter approaches analyze
�ow induced stretching on boundary surfaces, they differ fundamen-
tally from the work presented in this paper, as the boundary structures
remain static and do not experience deformations themselves.

In the context of mathematical deformations one inevitably enters
the realm of tensor �eld processing and visualization. Here, glyphs
[24] and tensor line techniques [8, 7, 16] make up a large part of ten-
sor �eld visualization techniques. To enhance the display of tensor
glyphs and facilitate adaptive meshing, different glyph packing strate-
gies have been proposed [21, 19, 15]. Metric tensor �elds are visu-
alized with the help of pseudo-meshes and tensor-lines in work by
Tchon et al. [26]. Our work modi�es glyph and tensor line packing
techniques to visualize the metric tensor �eld both in two-dimensions
and on the �ow surface itself.

3 TENSORS IN CONTINUUM MECHANICS

In this paper we are concerned with second-order tensors, so-called
matrices, which are two-dimensional arrays of scalars operating on
vector-spaces. Such a tensorA 2 Rn� m de�nes a linear mapping from
vectorsv 2 Rm to vectors inRn and is therefore a suitable mathemati-
cal description of linear deformations. The fact that we are investigat-
ing two-manifolds in three-dimensional time-varying space restricts
these spaces to dimensionsn;m2 f 2;3;4g. In the following we give a
brief review of the mathematical background used in this paper, lim-
ited to the three-dimensional stationary case for notational simplicity.

3.1 Notation

For notational ef�ciency, we denote vectors as bold faced lowercase
lettersv, and tensors as bold-faced capitalsM (with the exception
of clearly identi�able tensors such asÑv) to distinguish them from
scalarss2 R.

3.2 Deformation Gradient Tensor

For a given displacement functiong : R3 ! R3 that maps
a position x = ( x;y;z) 2 R3 to its displaced positiong(x) =
(gx(x);gy(x);gz(x)) 2 R3, the correspondingdeformation gradient
tensor
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is a second-order tensor describing local change of deformation. Thus,
an in�nitesimal (differential) vectordx 2 R3 is mapped to its deformed

vectordy 2 R3 by simple matrix-vector multiplicationdy = Ddx. In
essence,D can be used to describe the local deformation of line ele-
ments in space.

3.3 Velocity Gradient Tensor

Thevelocity gradient tensorÑv of a �ow �eld v : R3 ! R3 describes
local linearized rate of change in velocity:
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Because velocity �elds are directly related to displacement functions,
the deformation gradient tensorD can be computed for a velocity �eld
with the help of its gradientÑv by the relation

D = eÑv�t ;

wheret 2 R describes local scaling of the velocity �eld (e.g.,Dt in
time-varying �ow �elds). A �rst order approximation of the matrix
exponentialeÑv�t is given byI + Ñv � t.

3.4 Metric Tensors

Given a parameterized two-manifold in three-space, ametric tensor
facilitates the measurement of lengths on the two-manifold in three
space.

Let p : W� R2 ! R3 be a parameterization of such a two-manifold
living in three-space. The corresponding metric tensorM at a po-
sition p(s;t) allows computation of lengthsl 2 R of line elements�
ds dt

�
2 Win three space:

l2 =
�
ds dt

�
M

�
ds
dt

�
:

Consequently, ametric tensorM is a symmetric, positive de�nite, sec-
ond order tensor, de�ning the stretching of vectors of a 2D space em-
bedded in three-space. For a differentiablep, the metric tensor is com-
puted as
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These mathematical properties make the metric tensor a prime tool for
analyzing and quantifying stretching and deformation of �ow surfaces
over time.

4 METRIC TENSORS FOR FLOW SURFACES

The described metric tensors connect �uid �ow with the notion of de-
formation, providing a mathematical framework for the investigation
of the deformation behavior of �ow structures such as integral sur-
faces. In the following we describe the basics of such surface mathe-
matics and the derivation of metric tensors for these �ow surfaces.

4.1 Flow Surfaces

The trajectoryf : R ! R3 or integral curverepresenting the motion of
a massless particle in a (time-varying) �ow �eldv : R3 � R ! R3 is
de�ned as the integral

f(x0; t0; t) = x0 +
Z t

t0
v(f(x0; t0; t ); t )dt ; (2)

wheref(x0; t0; t0) = x0 corresponds to the initial position of the particle
at its time of birtht0 2 R. If the velocity �eld is stationary, such a sin-
gle trajectory is astream line(andt typically corresponds to the local
magnitude of the velocity vectors), otherwise it is known aspath line.
A general �ow surface is then de�ned as a two-manifold composed of
a set of particle positions or trajectories.

These integral surfaces can be classi�ed into two groups. They are
stream surfaces(path surfaces) if they describe the locus of particle



trajectories emanating from positions on a seeding curvec : R ! R3,
a so-calledrake, in stationary (time-varying) �ow. Otherwise, they are
denoted astime surfaces(streak surfaces) if they describe the locus of
a set of particles at speci�c points in time. In the latter group, time
surfaces are created by advecting a set of particles born at the same
point in time, whereas the particles that constitute streak surface are
continuously seeded over time from a given rake.

Fig. 2. Parameter space evolution of a streak surface growing vertically
along t. The existing parameter space region (W1) is extended by DWas
the surface grows. Note that W is constant for a time surface, because
no new particles are seeded as the surface evolves.

In every time step, stream, path, and streak surfaces possess a nat-
ural parameterizationp : W� R2 ! R3 that maps positions on the
two-manifold into three-space, as illustrated in Figure 2. In the fol-
lowing, we abstract from the time-varying character of this parame-
terization for notational simplicity. Parameters(s;t) 2 Wof a position
p(s;t) = ( x(s;t);y(s;t);z(s;t)) on these surfaces are uniquely de�ned
by the seeding position of the corresponding �ow particle along the
rake,s2 R and its time of birth,t 2 R. Consequently, for a parameter-
ization given at �xed time stepti 2 R the equationf(c(s);t; ti) = p(s;t)
holds. Time surfaces, however, rely on the de�nition of an initial, arbi-
trary parameterization because they do not possess a one-dimensional
seeding structure. Note that a �ow particle therefore possesses a �xed
location inW, regardless of how the surface evolves.

The existence of such a consistent parameterization for every time
step of surface evolution is the basis for our visualization and analysis
techniques presented in the remainder of this paper.

4.2 Flow Surface Deformations

The surfaces de�ned in the previous section usually undergo multiple
transformations as they evolve over time. Despite the diversity of pos-
sible surface transformations, they can be grouped into few different
types of surface deformations. In summary the overall transforma-
tion of such a surface is composed of translations, rigid rotations, and
deformations, whereas the latter describes phenomena such as bend-
ing and twisting as well as planar, tangential stretching alongds and
dt (see Figure 3). In this paper we are concerned with deformations
that have an immediate impact on surface parameter-space. This effec-
tively eliminates uniform rigid rotation and translation of the complete
surface from the focus of our analysis. In general, �ow surface defor-
mations come into play at two stages of the �ow surface processing
pipeline - during generation and visualization. In the following we
summarize the impact of deformations on both stages to provide an
adequate motivation for our work.

Fig. 3. Illustration of various surface deformation types. From left to
right: Undeformed state, bending, twisting, stretching (one-directional).

4.2.1 Flow Surface Generation

Numerically the integral in (2) is discretized as Riemann sum and in
practice computed by Euler integration or higher order methods such
as adaptive Runge Kutta [5] schemes. Additionally, the set of particle
trajectories required for a surface representation needs to be sampled

as well. Fortunately, recently developed adaptive surface generation
techniques [11, 20] have found a way of balancing the trade-off be-
tween low accuracy in the case of very low trajectory numbers and
high computational costs in high resolution surfaces.

While performing adaptivity measures, these �ow surface construc-
tion algorithms compensate for different types of surface deforma-
tions. In the context of stream and path surfaces, adaptive surface
generation techniques [11] take into account divergence and conver-
gence of trajectories by insertion of new trajectories during the sur-
face integration process. Furthermore, twisting and bending is com-
pensated by surface re�nement in regions, where mesh angles exceed
given thresholds. Time and streak surfaces require an additional de-
gree of adaptivity [20], as the surfaces do not only evolve along a front
of trajectories, but can deform at arbitrary positions in their parameter
space. In these cases, excessive local mesh stretching can be avoided
by local mesh re�nement. Other approaches take surface curvature
into account when re�ning the surface mesh. It is notable that often,
however, adaptive surface generation measures are not an option due to
the generation technique (e.g., GPU based surfaces [4]) or strict mem-
ory constraints. In summary, quanti�cation of surface stretching is
of central importance to the construction of accurate integral surfaces
and has the potential to improve and evaluate the surface construction
process.

4.2.2 Flow Surface Visualization

Once the surface is generated, appropriate lighting and texturing tech-
niques can be applied to highlight different characteristics of the sur-
face. Bending and twisting of surfaces is generally conveyed by sur-
face shape and normal deviation directly, resulting in shading that ap-
propriately re�ects deformations that lead to general surface shape
change. Stretching and shearing of surfaces, however, has not been
in the center of attention in �ow surface visualization. In general,
texturing has been applied to depict �ow lines such as time lines and
stream lines on surfaces. The unique de�nition of surface parameter
spaceWas described previously in this paper, conveniently allows di-
rect reuse of(s;t) 2 W as texture coordinates. Other visualizations
use more complex texture patterns that are able to convey large scale
multi-directional deformations of parameter space as well. However,
quanti�cation of this parameter space deformation has not been inte-
grated into existing visualization techniques. Figure 4 shows a selec-
tion of common �ow surface visualization techniques. Note that there
are also texturing techniques that compensate for local deformation
by operating in image space [18]. This notable lack of speci�c defor-
mation visualization together with the impact potential of deformation
quanti�cation onto the visualization and analysis process constitutes
the main motivation of this work.

Fig. 4. Flow surfaces with different widely-used texturing settings to
reveal tangential surface deformations. Notice how stream-line like vi-
sualizations can only convey one directional stretching and either lose
considerable detail or contribute to cluttering based on texture resolu-
tion. The same holds for other texturing techniques that facilitate simple
visualization of two-dimensional stretching by use of shape pattern.

4.3 Computation of Metric Tensors

Quanti�cation of �ow surface stretching and shearing is of central im-
portance to complete �ow analysis. In the following we present two



alternative strategies for the generation of a metric tensor �eld that al-
lows not only quanti�cation of maximal stretching magnitudes but also
quanti�cation of relative and absolute stretching directions directly on
�ow surfaces and their parameter spaces. Both approaches �rst com-
pute an estimation of overall surface deformation before encoding it in
the form of a two-dimensional metric tensor. The �rst approach is in-
dependent of the concrete properties of a surface discretization and re-
lies on local trajectory information only, whereas the second approach
makes heavy use of surface mesh information but does not require the
modi�cation of numerical integration code.

4.3.1 Local Deformations along Trajectories

The minimal independent unit of a �ow surface is a particle trajectory.
Computing surface deformation individually for members of this set
of trajectories is highly desirable, especially since �ow surfaces do not
necessarily have to possess an explicit geometric representation of the
particle neighborhood in the form of a discrete surface mesh. Luckily,
a tensor that describes the deformation of in�nitesimal neighborhoods
along particle trajectories can be computed by accumulating the defor-
mation gradient tensor along an individual particle trace [13, 23], thus
facilitating a numerical approximation of deformation that is fully in-
dependent of the �nal surface representation. Given the sequenceof
particle positions(ti ; f(:; :; ti)) along a particle trace and assuming an
initially undistorted neighborhood, the total deformationT of an in-
�nitesimal neighborhood at positionf(:; :; ti) evaluates to

T = eÑvf(:;:;ti� 1) �(ti � ti� 1) � ::: � eÑvf(:;:;t0) �(t1� t0) ; (3)

which corresponds to successive multiplications of the local deforma-
tion gradient tensors. This effectively accumulates the deformation of
a three-dimensional neighborhood along a particle trajectory.

In addition to the information provided by common particle trajec-
tory computations using numerical integration schemes such as Euler
or Runge-Kutta, this equation requires the evaluation of local velocity
gradients. Luckily, most common higher order vector �eld interpola-
tion schemes allow the direct computation of derivatives, thus provid-
ing a virtually free approximation of the local velocity gradient. In all
other methods, the velocity gradient may be approximated by �nite
differencing schemes. Each individual deformation gradient tensor
Di = eÑvf(:;:;ti� 1) �(ti � ti� 1) in (3) encodes local coordinate frame deforma-
tion from one particle position to the next. Figure 5 shows a sequence
of deformed neighborhoods for a time surface.

Fig. 5. Accumulated deformations of neighborhoods for an evolving time
surface shown as ellipsoids at particle positions. In incompressible �ow,
the volume of individual ellipsoids stays constant over time.

This tensorT contains all information necessary for the computa-
tion of surface-tangential or parameter space deformations. Letdsand
dt be differential vectors in surface parameter space at a particlep(s;t)
immediately after it enters the �ow �eld at a timet0. These vectors are
mapped ontoTds andTdt at a positionti in time along the particle
trajectory. This effectively facilitates evaluation of tangent vectors at
different stages of surface deformation.

4.3.2 Deformations of the Surface Mesh

While the method presented in the previous section is independent of
a concrete surface representation, e.g., a piecewise linear mesh, it re-
quires modi�cation of particle path integration code, which may not be
feasible in all cases, especially if visualization of surfaces is performed
purely during post-processing of available geometry. However, if the
surface geometry is parameterized in the way described in Section 4.1,

we can compute surface parameter space deformations directly on dis-
crete surface representations that converge to the true deformation as
representation accuracy/resolution increases. The central advantage of
this method is that it does not require any modi�cation of particle path
integration and may be applied non-iteratively to arbitrary time steps
during post-processing.

Ef�cient computation of surface deformations on a mesh requires
fast evaluation ofp. Fortunately, every cell in a tessellated surface
mesh (i.e., triangle in a piecewise linear triangulation) has corner
pointsci 2 Wwith corresponding positionsqi 2 R3. To facilitate fast
evaluation ofp on the complete surface, we can operate directly on
this set of cells. To this end we construct a subdivision tree [2] inW
for every time step of the surface evolution, that allows fast location
of surface cells for a given(s;t) 2 W. The 3D position of an arbi-
trary point (s;t) 2 W is then computed by barycentric interpolation
within the triangle that contains(s;t) as(s;t) = a1c1 + a2c2 + a3c3
with 0 � a i � 1;å i a i = 1:

p(s;t) = a1q1 + a2q2 + a3q3:

This allows ef�cient evaluation ofp as de�ned in Section 3.4 for
all points inWin all time steps of the surface, as illustrated in Figure
6. Obviously, the obtained values are dependent on mesh quality and
resolution.

Fig. 6. Mappings between two-dimensional parameter space and three-
space. A metric tensor M de�nes the measuring of lengths on a de-
formed manifold, whereas p maps between parameter space (left) and
three-space (right).

In accordance to the previous section,Tds and Tdt at (s;t) 2 W
can be approximated at an arbitrary point in time by evaluation of the
corresponding parameter-space mappingp

Tds = p((s;t) + ds) � p(s;t):

Due to piecewise linear approximations of surfaces in triangulated
meshes, this approximation loses signi�cant accuracy in low resolu-
tion meshes and is only suitable for adaptive meshes, i.e., meshes that
maintain a reasonable mesh resolution in regions with high divergence.

4.3.3 Computing the Metric Tensor

With the given mapping from
�
ds dt

�
to

�
Tds Tdt

�
, computed by

either one of the two presented techniques, the metric tensor atp(s;t)
at timeti according to (1) evaluates to

M =
�

< Tds;Tds > < Tds;Tdt >
< Tds;Tdt > < Tdt ;Tdt >

�
:

For improved quanti�cation of stretching and shearing, we trans-
form this parameter space description into a tensorM � that represents
stretching and shearing quantities directly. Letl 1; l 2 and e1;e2 be
eigenvalues and (unit) eigenvectors ofM at timetk. When compared
to its length in three-space at timet0, a vectorei in Wcorresponding to
an eigenvector ofM is stretched by a factor of

p
l i at timetk. Thus, a

tensorM � which directly encodes this physical stretching relationship
can be constructed as

M � =
�
e1 e2

�
diag

� p
l 1;

p
l 2

� �
e1 e2

� T :

This essentially constructs a matrix whose spectral decomposition
is the square root of the spectral decomposition ofM. The derived



tensor �eld is a two-dimensional second-order tensor �eld that gives
for every positionp(s;t), how its neighborhood is stretched alongds
anddt.

In summary, these computations provide us with a second-order
tensorM � 2 R2� 2 at every position in parameter space(s;t) and cor-
responding three space positionp(s;t) throughout the whole life time
of a �ow surface. This time-varying tensor �eld (in the following de-
noted asM � ) can contribute signi�cantly to �ow surface visualization
and analysis as demonstrated in the remainder of this paper.

4.3.4 The Inverse Tensor Field

Not only does the information stored in the tensor �eldM � have uses
for �ow surface visualization, but so does its inverse. This inverse of
the metric tensor �eld opens numerous possibilities for surface visu-
alization and analysis and is often superior in its expressiveness when
compared to the metric tensor �eld itself.

Tensors in this inverse tensor �eld do not describe the mapping of
lengths from parameter space to three-space, but compensate for the
distortion of three-space by compressing lengths in parameter space
that are stretched and by stretching directions that are being com-
pressed in three-space. This inverse mapping can be used to reverse
effects of parameter space stretching for texture modulation and sur-
face sampling and has various bene�ts for �ow surface visualization
as detailed in the following.

5 VISUALIZATION AND INTERACTION

The metric tensor �eld is able to quantify parameter space deformation
of �ow surfaces and can be used to enhance �ow surface visualization
by means of surface modulation and rendering of parameter space for
querying and analysis. In the following sections we propose methods
for parameter space visualization and enhanced �ow surface rendering
based on the derived metric tensors. Concrete demonstrations of the
proposed visualization techniques are shown in Section 6.

5.1 Visualizing Parameter Space

The parameterization of the surface,p is de�ned over a two-
dimensional parameter spaceW. Because the metric tensor �eldM �

de�ned on this (time-varying) parameter-space directly encodes inte-
grated surface deformation over time, a rendering of this tensor �eld
for the purpose of querying and two-dimensional surface analysis can
greatly enhance �ow surface and �ow �eld analysis.

We propose two complementing visualization techniques: dense
glyph packing to illustrate overlap-free tensor visualization and tensor-
line packing for the analysis of tensor �eld structure and directions.

The tensor �eld is given as set of tensors stored at particle/trajectory
positions inW. We obtain a continuous representation of the tensor
�eld by interpolating tensor values of neighboring positions inW. If
a mesh representation of the surface is available, we use a cell locator
as described in Section 4.3.2 to locate and interpolate tensor values
within mesh triangles.

5.1.1 Glyph Packing

Tensor glyphs are suitable to represent multiple tensor quantities in
one single shape and, if placed in a dense manner, allow for direct
comparison of neighboring tensor attributes. For this matter we desire
to generate a dense two-dimensional glyph packing of tensor shapes.
Tensors in our metric tensor �eld can encode highly varying degrees of
anisotropy and orientation, making a dense, overlap-free sampling on a
uniform grid impossible. For dense overlap-free glyph packing, there
are mainly two classes of methods in use. The �rst class starts with
an approximate glyph sampling of the �eld which is then modi�ed
by a suitable convergence scheme to produce an even glyph packing;
the second class performs region growing. The work by Kindlmann
and Westin [19] is an iterative convergence scheme for 2D and 3D
glyph-particle systems based on attracting and repelling forces, which
shifts particles to create an even distribution of glyph shapes. A related
approach is taken in the work by Feng et al. [9]. The resulting quality
of the dense packing is heavily dependent on initial glyph placement

con�gurations and the former technique may lead to overlaps in the
2D case caused by evaluation of 3D forces. The method by Lo and
Wang [21] belongs to the group of region growing. It seeds 2D glyphs
at a given starting position in the domain and performs region growing
in a circular manner, iteratively adjusting predicted glyph positions to
ensure that neighboring glyphs are touching or as-close-as-possible, as
illustrated in Figure 7.

Our tensor �eld is inherently two-dimensional, has a bounded do-
main, and, because we want to make use of glyph packing for surface
sampling as demonstrated in the results section, requires as-dense-as-
possible packing of glyphs. For these reasons, we developed a modi-
�ed glyph packing algorithm based on ellipse packing [21]. Our mod-
i�cations are the following: We enable the algorithm to operate on
bounded domains and introduce the distinction between an underlying
tensor �eld and a shape �eld to support arbitrary glyph shapes.

Fig. 7. Steps in glyph packing as introduced by Lo and Wang [21]: An
initial estimated glyph position in the neighborhood of existing glyphs is
iteratively moved to an optimal position where the new glyph touches
both parent glyphs.

The glyph movement shown in Figure 7 is based on maximizing
a proximity functionb that is equal to 1 if the glyph located atp is
touching its parent glyphs located atp1 andp2. In the original paper
[21], thisb is computed asb = b1 � b2, where

bi = min
�

kpi � pk
hi + h

;
hi + h

kpi � pk

�
:

Here,hi is the length of glyph shapei in directionp � pi andh is the
length of the new glyph in directionpi � p. The maximum is obvi-
ously obtained iffkpi � pk = hi + h. We change the underlying notion
slightly by introducing the distinction between a shape and a metric
�eld. For the computation of shape lengthsh, we require the de�ni-
tion of a shape �elds : R2 � R ! R that returns for every position
x 2 R2 and angle (direction) in spaceq 2 R the length of the shape
in that direction. Note that this function has to be convex to minimize
shape overlaps. The measured distance between shapes along a given
direction is then scaled according to the underlying metric tensor �eld.
For ellipse packing, we therefore simply use a constant shape �elds
representing a uniformly scaled sphere in connection with the metric
tensor �eld or its inverse.

The second modi�cation, the incorporation of an unbounded do-
main has one major consequence for the algorithm. Since there is no
tensor information available outside of the parameter space domain
W, the glyph seeding will stop when or before reaching the data set
boundaries, and thus create empty regions in the proximity of data set
boundaries. To alleviate this issue, we assume that the shape and ten-
sor �elds continue linearly across domain boundaries. This is achieved
by using linear approximations of shape and tensor information across
the seeding directionv, as shown in Figure 7, if the seeding position
lies outside of the data set boundaries.

With these modi�cations we are able to perform arbitrary glyph
packing in bounded domains without creating holes near data set
boundaries. A comparison of the algorithms with and without mod-
i�cation is shown in Figure 8.

5.1.2 Time Varying Glyph Representation

Glyph packing in one instance of the surface parameter space ignores
the evolution ofW (for path, and streak surfaces) and the parameter
space mapping function over time and does generally not guarantee
spatial consistency over time. Including the time-varying behavior of



Fig. 8. Standard ellipse packing [21] on unbounded domains and ellipse
packing with bounded domain treatment. The color map used through-
out this work is shown on the left, here encoding glyph anisotropy.

surface deformations into the parameter space visualization is a ne-
cessity for complete and consistent visualization of �ow surface evo-
lution. For this reason we develop time-varying glyph representations
by combining glyph packing with glyph history display. To display the
evolution of deformation in parameter space over an interval[ti ; t j ], we
perform the following steps:

1. Compute deformed glyph shapes for every particle inWfor every
time step in[ti ; t j ]

2. Construct convex enclosing hull of computed glyph shapes for
every particle

3. Perform glyph packing with convex hull shapes and a metric �eld
representing the identity mapping

4. Display opaque current glyph attp 2 [ti ; t j ] together with trans-
parent glyphs fort 2 [ti ; t j ]=tp

These steps ensure that neither current glyphs, nor past glyphs of
adjacent particles in the �nal representation overlap or occlude each
other. The display of current, past and, future deformations (iftp < t j )
glyphs allows the analysis of time-varying deformation and easy iden-
ti�cation of stationary and highly time-varying deformation behaviors.
Interactive selection oftp 2 [ti ; t j ] facilitates spatially consistent view-
ing of deformation states.

With the exception of step 2, these computations are straightfor-
ward. To compute a convex enclosing hull in step 2, we �nd the
maximal projections of all glyph shapes onto a prede�ned coordi-
nate system. Given a sequence of ellipse representations of tensors
f M �

i ; : : : ;M �
j g, we compute the (normalized) eigenvector directions

e1;e2 of M �
j and project all other major and minor glyph axes onto this

coordinate system, keeping track of the maximal projection length.
The desired enclosing ellipse is then de�ned as the representation of
the tensor

M �
m =

�
e1 e2

�
diag(maxi(je1

T l i
kek

i j);maxi(je2
T l i

kek
i j))

�
e1 e2

� T

wherek2 f 1;2gas illustrated in Figure 9. We chooseM �
j for initial co-

ordinate system de�nition, since late glyphs tend to have more promi-
nent anisotropic shapes. Note that more involved convex hull com-
putations are possible by evaluating ellipse lengths on a thoroughly
sampled circle.

Fig. 9. Maximum projections of ellipse axes onto an initial coordinate
system govern shape and size of the �nal enclosing hull.

5.1.3 Tensor Line Packing

While glyphs are a formidable tool to visualize the effects of lo-
cal shearing and stretching on parameter space, they lack a continu-
ous representation of stretching directions especially in case of high
anisotropy. A sense of continuity with respect to stretching directions
and deformation topology can be achieved by the integration oftensor
lines. These lines are tensor �eld equivalents of stream lines integrated
in the directions of the major or the minor eigenvector �eld. Instead of
making use of a uniform tensor line spacing to get a dense representa-
tion of the stretching directions, we choose to pack hyper stream lines
[7], i.e., lines whose thickness locally corresponds to the magnitude of
the eigenvalue of the other eigenvector �eld. A dense packing of these
ribbon-like lines ensures that line spacing corresponds to parameter
space stretching in the remaining eigenvector direction, i.e., lines are
further apart if the space is stretched in orthogonal direction. This has
the additional advantage of reducing visual complexity that can arise
during the visualization of dense sets of orthogonal lines, which can
cause signi�cant high-frequency patterns across the resulting image,
and has a greater continuity than local image-based methods [16].

Stream line placement [27] is a well-explored area of research and
has recently been applied to hyper stream-lines [6]. Instead of using
an isotropic density kernel, we use eigenvalue magnitudes to govern
the local density of tensor lines and make use of an offscreen pixel
buffer for optimal performance. We perform screen-space tensor line
packing by seeding a line in parameter space and saving the distance
to the corresponding tensor line core to all pixels of an offscreen pixel
buffer that are covered by the corresponding hyper stream line rib-
bon. If a tensor line core touches a pixel with a distance value less
than a preset fraction of the ribbon width, this indicates that it comes
too close to an existing tensor-line. In these cases, or if a line cy-
cle is detected, line integration is canceled. Figure 10 illustrates this
process. We seed new lines at uncovered pixels in proximity to exist-
ing rasterized hyper stream lines. If packed ellipses are present in the
sampled space, we seed tensor lines at glyph centers, providing a good
approximation of initial line spacing. These integration and rasteriza-
tion steps are repeated until all of the off-screen pixel buffer is covered
by hyper stream line ribbons and we remove short line fragments in a
post-processing step to produce a clean dense packing of tensor-lines.
The same procedure is repeated for both eigenvector �elds.

Fig. 10. The tensor line packing process makes use of hyper stream line
ribbons and an offscreen pixel buffer to mark covered regions. Pixels
z in the buffer hold the minimal distance to a tensor line core whose
ribbon covers z. Right: Line integration stops if they enter pixels whose
distance value indicates closeness to an existing tensor-line.

5.2 Enhancing Flow Surface Visualization

With the derived metric tensor �elds we are able to quantify effects of
stretching and shearing on the �ow surface itself. We use this infor-
mation gathered from parameter space to enhance �ow surface visual-
ization and provide interactive surface querying techniques.

5.2.1 Color and Texture Mapping

A number of important tensor �eld quantities can be described as
scalars, which are suitable for direct color or texture mapping. We
quantify different stretching properties with the following scalars and
their derivatives in time:

� Fractional anisotropy:

FA(T) =
p

2
p

(l 1� tr(T))2+( l 2� tr(T))2
p

l 2
1 + l 2

2

Describes the degree of tensor anisotropy. Fully isotropic
stretching evaluates to 0, degenerate line-like tensors to 1.



� Ellipse area:
A(T) = pl 1l 2
Approximates the area in three-space occupied by a local region
of the parameter space.

� (Logarithmic) magnitude of maximal stretching direction:
S(T) = max(l 1; l 2) or S(T) = log(max(l 1; l 2))
Describes (exponential) maximal stretching in a sense compara-
ble to FTLE.

We generate modulation textures from these scalars by mapping
them or their derivatives to color or transparency of a texture that cov-
ersW. Note that surfaces can contain regions with signi�cant isotropic
stretching, leading to an effective gain of surface area. This is not pos-
sible in classic FTLE of incompressible �uid �ows. For this reasons, a
clear physical distinction can be made between the different stretching
measures represented byellipse areaandanisotropy.

A different class of texture generation is made possible by the in-
verse tensor �eld. The inverse tensor �eld facilitates texturing of the
�ow surface with locally undistorted surface textures. For example,
we may perform glyph packing in the inverse tensor �eld and use the
resulting output as texture map input to the surface, effectively tex-
turing the surface with undistorted shapes. This is possible since the
resulting glyph sizes in parameter space compensate for stretching of
three-space. The same holds for tensor line packing in the inverse
tensor �eld. The resulting lines have uniform distance in three-space.
Note that the accuracy of this uniformity depends directly on the qual-
ity of the dense glyph and line packing techniques used.

5.2.2 Geometry Splatting

As established previously, the inverse tensor �eld is suitable for re-
moving distortions from shapes and textures generated in parameter
space. With this in mind, we can perform packing of parameterized
glyphs and tensor lines in parameter space with the inverse tensor
�eld. These geometric representations inWare sampled and mapped
to three-space by applying the mappingp to every sample position.
The resulting geometry can then be rendered directly on the surface
as high resolution geometric objects, avoiding common problems of
texture mapping such as loss of local resolution due to stretching. The
results produced by such geometry splatting are directly comparable
to those in curvature line drawing and surface sampling [1].

5.2.3 Surface Querying

The two-dimensional nature of surface parameter spaceWallows for
advanced querying techniques, that make interactive, target drivendata
exploration possible. With a suitable querying mechanism at hand,
a full �ow surface can be used to probe a vector �eld, allowing the
user to mask out or highlight important surface or �ow �eld regions
depending on surface deformation characteristics. Because we can
directly evaluate the mappingp, as well as its inversep� 1, linking of
interactions in parameter space with effects in three-space is a straight-
forward extension to texture and color mapping as described in the
previous sections. We implement simple two-dimensional drawing
operations that allow highlighting and masking of a surface by direct
manipulation of color and transparency values of a modulation texture.

6 RESULTS

In the following we present examples and illustrate their impact on
�ow visualization. We study our technique mainly on a time surface
created in a time-varying, jet �ow data set. The high Reynolds number
of this simulation creates signi�cant turbulence along the outer region
of the injected stream of �uid and creates a noticeable plume towards
its front. The resulting combination of isotropic surface stretching,
high anisotropic stretching, and surface symmetries makes it ideal for
our analysis.

6.1 Technical Results

Our technique operates mainly in two-dimensional parameter-space
W, which allows for fast glyph packing and tensor line integration.

This advantage of operating in two-dimensional space enables interac-
tive parameter-space manipulation, such as highlighting or zooming,
as shown in Figures 11 and 12.

Fig. 11. Interaction in parameter space (a) allows for surface masking
and highlighting. (b) Regions with low and (d) high fractional anisotropy
were �ltered. In (c) central degenerate points on the surfac e stretching
�eld were highlighted in Wand are clearly visible on the surface.

Fig. 12. As parts of the surface may map to sub-pixel elements in
parameter-regions as the surface evolves, zooming can reveal more de-
tails of surface stretching.

Because a quantitative comparison between the two proposed met-
ric tensor computation schemes is dependent on a large number of
factors, including mesh resolution, integration and velocity gradient
interpolation scheme, we offer a simple visual comparison between
the two methods in Figure 13. Note that without the application of
a color-map, the differences between both methods would be barely
noticeable.

The presented tensor line packing technique has proven to be a fast
and direct way to extract continuous deformation information from
the tensor �eld that is able to convey topological features of the tensor
�eld as well as stretching magnitude, as can be seen in Figure 1. Being
able to use hyper stream line widths to pack tensor lines in the inverse
tensor �eld has shown to be especially useful to obtain approximately
evenly spaced lines on �ow surfaces in three-space, see Figure 14. The
tensor �eld and its inverse are capable of giving complementing no-
tions of surface stretching. The inverse tensor �eld is especially useful
for uniform surface sampling when combined with glyph packing and
can be used for distortion-free surface texturing as shown in Figure 14.
Furthermore, glyph centers in the inverse tensor �eld constitute posi-
tions that uniformly sample the surface in three-space without the need



Fig. 13. Metric tensor �eld visualization in parameter-spa ce. The left
image was computed with local trajectory integration, the right image
is based on a medium-resolution surface mesh. Subtle differences are
notable with a color-mapped parameter-space (fractional anisotropy).

for additional computation of geodesics. A straightforward sequential
implementation of our glyph packing technique can pack around 5000
glyphs in the two-dimensional parameter space in about one second
on an Intel Corei7 at 2.2Ghz.

In complex �ow surfaces large parts of parameter space glyphs can
often degenerate to lines, i.e., the tensors are highly anisotropic, caus-
ing the glyph-packing and tensor line visualization to suffer from an
overload of high frequency details. To alleviate this issue we render the
tensor �eld with square-root scaled eigenvalues in these cases (result-
ing in fourth roots in Eq. (4.3.3)). This provides a similar impression
of surface stretching as the original �eld and maintains eigenvector di-
rections, while signi�cantly reducing visual anisotropy. In such cases
of excessive stretching, being able to zoom into speci�c regions of the
data set to obtain a small scale view of the region is imperative.

6.2 Flow and Surface Analysis

Combinations of the presented methods with existing �ow surface vi-
sualization techniques can be used to ef�ciently depict multiple prop-
erties of �ow surfaces, as illustrated in Figure 14. The quanti�cation
of surface deformation enables the use of alternative surface texturing
techniques, while still conveying stretching and anisotropy informa-
tion in the form of color or opacity maps. The concurrent and linked
display of parameter-space allows for more complete surface analy-
sis, making the detection of symmetries and stretching extrema in the
�ow surface signi�cantly easier. Notice how the inverse metric ten-
sor �eld is used to compensate texture distortion. Parameter space
color mapping shows an uneven but symmetric stretching behavior at
the peak of the plume, highlighting more complex surface evolution
properties than visible with simple texture mapping. Divergence and
convergence properties of the �ow �eld can be directly deduced from
observations of surface stretching.

In Figure 15 we show a snapshot of the rising time surface with dif-
ferent surface deformation data shown. Anisotropic surface stretching
is clearly visible along the surface regions that are immediately paral-
lel to the �ow direction, whereas isotropic stretching at the top of the
plume can be identi�ed by mapping transparency to tensor area. This
indicates a characteristic behavior of jet streams, where the front of the
stream pushes into resting �uid and expands into multiple directions.

An interesting look at time-varying surface area change is given in
Figure 16, where the derivative of tensor area is mapped to parameter
space and the surface. The four red highlights can be identi�ed as be-
longing to high surface isotropy with high area gain. This implies the
presence of four prevalent streams in that region of the �ow �eld that
show diverging �ow behavior along a plane tangential to the surface.
At the same time, since the �ow �eld is incompressible and has to pre-
serve volume, this indicates a relative compression of �ow along the
main stream direction.

In Figure 17 we show a rendering of time-varying glyph packing.
This visualization reveals that anisotropic stretching and compression
is not bound to the same parts of parameter space as time changes.

Fig. 15. The same surface shown with deformed 3D neighborhoods
as represented by T, color-mapped with surface anisotropy, and alpha
mapping applied to ellipse area. The last mimics thinning of dye streams
where regions with lower concentrations are more transparent.

Fig. 16. The derivative of tensor volume reveals which regions of the
surface gain in volume and which are being contracted over time.

Furthermore, it becomes clear, that the same region of the surface can
undergo signi�cantly different stretching behavior over time, as indi-
cated by a strong change in stretching directions.

Fig. 17. The time-varying parameter-space visualization reveals how
parts of the surface experience different forms of anisotropic stretching
over time. In some regions (close-up) present and past (gray) glyphs
show orthogonal stretching directions.

To demonstrate the robustness of the developed method, Figure 18
shows the application of our techniques to an evolving streak surface
in a second data set. Note how the anisotropy mapping can identify a
region along the center streak line of the surface that remains largely
isotropic during deformation. A second surface behavior that is not
evident by shape analysis is the compressed region along the main
fold of the surface, as seen in the tensor area mapping.

The interaction techniques provided by our method allow for ad-
vanced �ow �eld querying with the help of �ow surface probes. After
releasing a �ow surface into the �ow �eld, querying in parameter space
can be used to highlight or �lter interesting regions of the �ow surface,
as demonstrated in Figure 11. Here, interaction was used to highlight
and track speci�c deformation behavior of the �ow surface. In Figure
11c, highlighting facilitates the identi�cation of tensor �eld singular-
ities on the �ow surface. Figures 11b and 11d mark highly isotropic
and highly anisotropic regions in the �ow �eld. In becomes evident
how the top of the jet stream results in strong growth in surface area



Fig. 14. Composition of different visualization techniques. Glyph (a) and tensor line packing (b) in the metric tensor (left halves) and inverse �eld.
Color map indicates local anisotropy. Major eigenvector lines are blue, lines that follow the minor eigenvector �eld ar e red. (c) Anisotropy color
map mapped to a standard sphere texture (left). The distortion present in standard �ow surface texturing is compensated by glyph shapes in the
inverse tensor �eld, as indicated by an undistorted sphere t exture. (d) Tensor-line geometry can be rendered on �ow surf aces directly to indicate
stretching directions. Mapping tensor area to transparency mimics physical thinning of �ow surfaces and gives a smoke- surface like impression.

Fig. 18. A streak surface in a Kármán vortex street with color-mapped
anisotropy (top) and alpha mapped tensor area.

as well as strong surface displacement as illustrated by the concurrent
display of 3 time steps. Regions with anisotropic stretching, however,
are located along outer regions of the jet stream.

7 CONCLUSIONS AND FUTURE WORK

We have presented two alternative ways to derive metric tensor �elds
for �ow surface visualization. The resulting tensor �elds have shown

to be highly useful for the analysis and illustration of surface defor-
mation and behavior. Direct visual and interactive mappings between
parameter-space and three-space allow for semantic linking of both
spaces, facilitating interactive surface querying to focus on regions
with speci�c deformation behavior. The proposed visualization and
analysis techniques have proven to be of high value to �ow analy-
sis by stressing the importance of �ow surfaces for �ow �eld probing
and providing tools for interactive and automatic deformation-based
surface highlighting. Improved analysis of physical �ow behavior is
provided by stretching analysis and quanti�cation, that may otherwise
be hidden in a three-dimensional visualization of �ow deformation.

We plan to extend this work in multiple directions, e.g., by perform-
ing level-of-detail texture mapping in object space, enhancing and il-
lustrating surface generation algorithms, as well as by relating surface
stretching topology to underlying �ow topology.
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